Title: | Functional Singular Spectrum Analysis |
---|---|
Description: | Methods and tools for implementing functional singular spectrum analysis and related techniques. |
Authors: | Hossein Haghbin [aut, cre] , Jordan Trinka [aut], Seyed Morteza Najibi [aut], Mehdi Maadooliat [aut] |
Maintainer: | Hossein Haghbin <[email protected]> |
License: | GPL-3 |
Version: | 3.1.0 |
Built: | 2025-01-01 05:07:41 UTC |
Source: | https://github.com/haghbinh/rfssa |
This function allows subtraction between two 'funts' (functional time series) objects or between a 'funts' object and a scalar. It returns the resulting difference.
## S3 method for class 'funts' obj1 - obj2 = NULL
## S3 method for class 'funts' obj1 - obj2 = NULL
obj1 |
an object of class 'funts', representing the first 'funts' object. |
obj2 |
an object of class 'funts' or a scalar. |
## Not run: data("Callcenter") y <- Callcenter print(1 - y) ## End(Not run)
## Not run: data("Callcenter") y <- Callcenter print(1 - y) ## End(Not run)
An indexing method for functional time series (funts
) objects.
## S3 method for class 'funts' obj[i = NULL, j = NULL]
## S3 method for class 'funts' obj[i = NULL, j = NULL]
obj |
an object of class |
i |
an index or indices specifying the subsets of times to extract. |
j |
an index or indices specifying the subsets of variables to extract. |
This function allows you to extract specific subsets of a functional time series based on the provided indices. You can specify which subsets you want to extract from the functional time series.
an 'funts' object containing the specified subsets
Perform scalar multiplication of a Functional Time Series (funts) object by either another funts object or a scalar value.
## S3 method for class 'funts' obj1 * obj2
## S3 method for class 'funts' obj1 * obj2
obj1 |
an object of class |
obj2 |
an object of class |
This function allows element-wise multiplication of a Functional Time Series (funts) object by another funts object or scalar value.
An object of class funts
representing the result of scalar multiplication.
A method for functional time series (funts
) addition and funts-scalar addition.
## S3 method for class 'funts' obj1 + obj2 = NULL
## S3 method for class 'funts' obj1 + obj2 = NULL
obj1 |
an object of class |
obj2 |
an object of class |
an object of class funts
.
This function allows you to convert various types of objects into a functional time series (funts
) object.
as.funts(obj, basis = NULL)
as.funts(obj, basis = NULL)
obj |
the object to be converted. It can be an object of class |
basis |
an optional argument specifying the basis to be used for the resulting |
An object of class funts
.
Only objects of class fd
(functional data) and fts
(functional time series) can be converted to a funts
object. Other types will result in an error.
require(rainbow) class(Australiasmoothfertility) x_funts1 <- as.funts(Australiasmoothfertility) plot(x_funts1, main = "Australians Fertility") require(fda) bs <- create.bspline.basis(rangeval = c(15, 49), nbasis = 13) fd_obj <- smooth.basis(argvals = Australiasmoothfertility$x, Australiasmoothfertility$y, bs)$fd x_funts <- as.funts(fd_obj) plotly_funts(x_funts, main = "Australians Fertility", ylab = "Fertility rate", xlab = "Age" )
require(rainbow) class(Australiasmoothfertility) x_funts1 <- as.funts(Australiasmoothfertility) plot(x_funts1, main = "Australians Fertility") require(fda) bs <- create.bspline.basis(rangeval = c(15, 49), nbasis = 13) fd_obj <- smooth.basis(argvals = Australiasmoothfertility$x, Australiasmoothfertility$y, bs)$fd x_funts <- as.funts(fd_obj) plotly_funts(x_funts, main = "Australians Fertility", ylab = "Fertility rate", xlab = "Age" )
This dataset represents a small call center for an anonymous bank (Brown et al., 2005). It provides detailed information about the exact times of calls that were connected to the center throughout the year 1999, from January 1 to December 31.
A functional time series object of class 'funts' with the following fields:
the time index indicating when the calls occurred.
the coefficients corresponding to the B-spline basis functions.
the basis functions used for the functional representation.
the dimension support of the functional data.
The data have been converted into a functional time series using a B-spline basis
system with 22 basis functions. The resulting dataset is stored as a functional time
series object of class 'funts'. You can load the raw data using the function
loadCallcenterData
. See funts
for more details.
Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., & Zhao, L. (2005). Statistical analysis of a telephone call center: A queueing-science perspective. Journal of the American Statistical Association, 100(469), 36-50.
## Not run: # Load the Callcenter dataset data("Callcenter") ## End(Not run)
## Not run: # Load the Callcenter dataset data("Callcenter") ## End(Not run)
This function allows you to evaluate a Functional Time Series (funts) object on a specified grid of argument values. The result is a list of matrices, each matrix corresponding to one dimension of the functional data.
eval.funts(argvals, obj)
eval.funts(argvals, obj)
argvals |
a list or numeric vector specifying the grid points at which to evaluate the functional time series. For multivariate functional data, provide a list of grids corresponding to each dimension. |
obj |
an object of class |
The argvals
argument can be a list of grids for multivariate functional data.
The function handles both functional basis and empirical basis cases for evaluation.
For empirical basis with irregular grids, a warning is issued as this feature
is under development.
A list of matrices, where each matrix represents the evaluated values of the functional data on the specified grid.
data("Montana") y <- Montana u <- seq(0, 23, len = 4) v <- seq(1, 33, len = 3) grid <- list(u, list(v, v)) eval.funts(grid, y)
data("Montana") y <- Montana u <- seq(0, 23, len = 4) v <- seq(1, 33, len = 3) grid <- list(u, list(v, v)) eval.funts(grid, y)
Perform functional singular spectrum analysis (FSSA) recurrent forecasting
(FSSA R-forecasting) or vector forecasting (FSSA V-forecasting) on univariate
or multivariate functional time series (funts
) observed over a
one-dimensional domain.
fforecast( U, groups = as.list(1L:10L), len = 1, method = "recurrent", only.new = TRUE, tol = NULL )
fforecast( U, groups = as.list(1L:10L), len = 1, method = "recurrent", only.new = TRUE, tol = NULL )
U |
an object of class |
groups |
a list of numeric vectors where each vector includes indices of elementary components of a group used for reconstruction and forecasting. |
len |
integer, the desired length of the forecasted FTS. |
method |
a character string specifying the type of forecasting to perform: - "recurrent" for FSSA R-forecasting. - "vector" for FSSA V-forecasting. |
only.new |
logical, if 'TRUE' then only forecasted FTS are returned, whole FTS otherwise. |
tol |
a double specifying the tolerated error in the approximation of the matrix used in forecasting algorithms. |
An object of class 'fforecast' which is a list of objects of class
funts
, where each one corresponds to a forecasted group.
## Not run: data("Callcenter") U <- fssa(Callcenter, L = 28) groups <- list(1, 1:7) ## Perform FSSA R-forecast pr_R <- fforecast( U = U, groups = groups, only.new = FALSE, len = 30, method = "recurrent" ) plot(pr_R, group_index = 1 ) plotly_funts(pr_R[[2]], main = "group = '1:7'") ## Perform FSSA V-forecast pr_V <- fforecast(U = U, groups = groups, len= 30, method = "vector") plot(pr_V, group_index = 1) plotly_funts(pr_V[[2]], type = "3Dline" , main = "group = '1:7'") # Multivariate forecasting example: data("Montana") time <- Montana$time grid <- list(0:23, list(1:33, 1:33)) montana <- eval.funts(Montana, argvals = grid) montana[[2]] <- array( scale(montana[[2]][, , ], center = min(montana[[2]][, , ]), scale = max(montana[[2]][, , ]) - min(montana[[2]][, , ]) ), dim = c(33, 33, 133) ) ## Kernel density estimation of pixel intensity NDVI <- matrix(NA, nrow = 512, ncol = 133) for (i in 1:133) NDVI[, i] <- (density(montana[[2]][, , i], from = 0, to = 1)$y) ## Define functional objects bs1 <- Montana$basis[[1]] require(fda) bs2 <- create.bspline.basis(nbasis = 15) Y <- funts(X = list(montana[[1]], NDVI), basisobj = list(bs1, bs2), vnames = c("Temperature", "NDVI Density"), dnames = c("Time", "NDVI"), tname = "Date") plotly_funts(Y, main = c("Temperature", "NDVI"), xticklocs = list(c(0, 6, 12, 18, 23), seq(1, 512, len = 9)), xticklabels = list(c(0, 6, 12, 18, 23), seq(0, 1, len = 9)) ) U <- fssa(Y = Y, L = 45) plotly_funts(U$Lsingf[[1]]) plot(U$Lsingf[[2]]) groups <- list(1, 1:3) pr_R <- fforecast(U = U, groups = groups, only.new = FALSE, len = 10, method = "recurrent") plot(pr_R) plotly_funts(pr_R[[2]], main = "Recurrent method, group = '1:3'") pr_V <- fforecast(U = U, groups = groups, len = 10, method = "vector") plot(pr_V, group_index = 1) plotly_funts(pr_V[[2]], main = "Vector method, group = '1:3'") ## End(Not run)
## Not run: data("Callcenter") U <- fssa(Callcenter, L = 28) groups <- list(1, 1:7) ## Perform FSSA R-forecast pr_R <- fforecast( U = U, groups = groups, only.new = FALSE, len = 30, method = "recurrent" ) plot(pr_R, group_index = 1 ) plotly_funts(pr_R[[2]], main = "group = '1:7'") ## Perform FSSA V-forecast pr_V <- fforecast(U = U, groups = groups, len= 30, method = "vector") plot(pr_V, group_index = 1) plotly_funts(pr_V[[2]], type = "3Dline" , main = "group = '1:7'") # Multivariate forecasting example: data("Montana") time <- Montana$time grid <- list(0:23, list(1:33, 1:33)) montana <- eval.funts(Montana, argvals = grid) montana[[2]] <- array( scale(montana[[2]][, , ], center = min(montana[[2]][, , ]), scale = max(montana[[2]][, , ]) - min(montana[[2]][, , ]) ), dim = c(33, 33, 133) ) ## Kernel density estimation of pixel intensity NDVI <- matrix(NA, nrow = 512, ncol = 133) for (i in 1:133) NDVI[, i] <- (density(montana[[2]][, , i], from = 0, to = 1)$y) ## Define functional objects bs1 <- Montana$basis[[1]] require(fda) bs2 <- create.bspline.basis(nbasis = 15) Y <- funts(X = list(montana[[1]], NDVI), basisobj = list(bs1, bs2), vnames = c("Temperature", "NDVI Density"), dnames = c("Time", "NDVI"), tname = "Date") plotly_funts(Y, main = c("Temperature", "NDVI"), xticklocs = list(c(0, 6, 12, 18, 23), seq(1, 512, len = 9)), xticklabels = list(c(0, 6, 12, 18, 23), seq(0, 1, len = 9)) ) U <- fssa(Y = Y, L = 45) plotly_funts(U$Lsingf[[1]]) plot(U$Lsingf[[2]]) groups <- list(1, 1:3) pr_R <- fforecast(U = U, groups = groups, only.new = FALSE, len = 10, method = "recurrent") plot(pr_R) plotly_funts(pr_R[[2]], main = "Recurrent method, group = '1:3'") pr_V <- fforecast(U = U, groups = groups, len = 10, method = "vector") plot(pr_V, group_index = 1) plotly_funts(pr_V[[2]], main = "Vector method, group = '1:3'") ## End(Not run)
Calculate the bootstrap prediction interval for functional singular
spectrum analysis (FSSA) forecasting predictions of univariate functional
time series (funts
) observed over a one-dimensional domain.
fpredinterval( Y, O = floor(Y$N * 0.7), L = floor((Y$N * 0.7)/12), ntriples = 10, Bt = 100, h = 1, alpha = 0.05, method = "recurrent", tol = 10^-3 )
fpredinterval( Y, O = floor(Y$N * 0.7), L = floor((Y$N * 0.7)/12), ntriples = 10, Bt = 100, h = 1, alpha = 0.05, method = "recurrent", tol = 10^-3 )
Y |
an object of class |
O |
a positive integer specifying the training set size. |
L |
a positive integer specifying the window length. |
ntriples |
the number of eigentriples to use for forecasts. |
Bt |
a positive integer specifying the number of bootstrap samples. |
h |
an integer specifying the forecast horizon. |
alpha |
a double (0 < alpha < 1) specifying the significance level. |
method |
a character string: "recurrent" or "vector" forecasting. |
tol |
a double specifying tolerated error in the approximation. |
a list of numeric vectors: point forecast, lower, and upper bounds.
## Not run: data("Callcenter") pred_interval <- fpredinterval( Y = Callcenter, O = 310, L = 28, ntriples = 7, Bt = 10000, h = 3 ) # Plot the forecast and prediction interval using ggplot df <- data.frame( x = 1:240, y = pred_interval$forecast, lower = pred_interval$lower, upper = pred_interval$upper ) require(ggplot2) # Create the ggplot ggplot(df, aes(x = x, y = y)) + geom_line(linewidth = 1.2) + scale_x_continuous( name = "Time", breaks = c(1, 60, 120, 180, 240), labels = c("00:00", "06:00", "12:00", "18:00", "24:00"), ) + scale_y_continuous(name = "Sqrt of Call Numbers") + ggtitle("Prediction Intervals for Jan. 3, 2000") + geom_ribbon(aes(ymin = lower, ymax = upper), fill = "darkolivegreen3", alpha = 0.3) + theme_minimal() ## End(Not run)
## Not run: data("Callcenter") pred_interval <- fpredinterval( Y = Callcenter, O = 310, L = 28, ntriples = 7, Bt = 10000, h = 3 ) # Plot the forecast and prediction interval using ggplot df <- data.frame( x = 1:240, y = pred_interval$forecast, lower = pred_interval$lower, upper = pred_interval$upper ) require(ggplot2) # Create the ggplot ggplot(df, aes(x = x, y = y)) + geom_line(linewidth = 1.2) + scale_x_continuous( name = "Time", breaks = c(1, 60, 120, 180, 240), labels = c("00:00", "06:00", "12:00", "18:00", "24:00"), ) + scale_y_continuous(name = "Sqrt of Call Numbers") + ggtitle("Prediction Intervals for Jan. 3, 2000") + geom_ribbon(aes(ymin = lower, ymax = upper), fill = "darkolivegreen3", alpha = 0.3) + theme_minimal() ## End(Not run)
Reconstruct univariate or multivariate functional time series
(funts
) objects from functional singular spectrum analysis
(fssa
) objects, including Grouping and Hankelization steps.
This function performs the reconstruction step for either univariate
functional singular spectrum analysis (ufssa) or multivariate
functional singular spectrum analysis (mfssa), depending on the input.
freconstruct(U, groups = as.list(1L:10L))
freconstruct(U, groups = as.list(1L:10L))
U |
an object of class |
groups |
a list of numeric vectors, each vector includes indices of elementary components of a group used for reconstruction. |
A named list of objects of class funts
that are
reconstructed according to the specified groups and a numeric vector
of eigenvalues.
Refer to fssa
for an example on how to run this
function starting from fssa
objects.
data("Callcenter") L <- 28 U <- fssa(Callcenter, L) # FSSA Reconstruction step: gr <- list(1, 2:3, 4:5, 6:7, 1:7) Q <- freconstruct(U, gr) plot(Q[[1]], main = "Call Center Mean Component") plot(Q[[2]], main = "Call Center First Periodic Component") #--------------- Multivariate FSSA Example on bivariate ----------------------------- ## temperature curves and smoothed images of vegetation ## Not run: data("Montana") L <- 45 U <- fssa(Montana, L) # MFSSA Reconstruction step: Q <- freconstruct(U = U, groups = list(1, 2, 3)) plotly_funts(Q[[1]], main = c("Temperature Curves Mean", "NDVI Images Mean"), color_palette = "RdYlGn", xticklabels = list( c("00:00", "06:00", "12:00", "18:00", "24:00"), c("113.40\u00B0 W", "113.30\u00B0 W") ), xticklocs = list(c(1, 6, 12, 18, 24), c(1, 33)), yticklabels = list(NA, c("48.70\u00B0 N", "48.77\u00B0 N")), yticklocs = list(NA, c(1, 33)) ) # mean plotly_funts(Q[[2]], main = c("Temperature Curves Periodic", "NDVI Images Periodic"), color_palette = "RdYlGn", xticklabels = list( c("00:00", "06:00", "12:00", "18:00", "24:00"), c("113.40\u00B0 W", "113.30\u00B0 W") ), xticklocs = list(c(1, 6, 12, 18, 24), c(1, 33)), yticklabels = list(NA, c("48.70\u00B0 N", "48.77\u00B0 N")), yticklocs = list(NA, c(1, 33)) ) # periodic plot(Q[[3]], obs = 3, main = c("Temperature Curves Trend", "NDVI Images Trend,") ) # trend ## End(Not run)
data("Callcenter") L <- 28 U <- fssa(Callcenter, L) # FSSA Reconstruction step: gr <- list(1, 2:3, 4:5, 6:7, 1:7) Q <- freconstruct(U, gr) plot(Q[[1]], main = "Call Center Mean Component") plot(Q[[2]], main = "Call Center First Periodic Component") #--------------- Multivariate FSSA Example on bivariate ----------------------------- ## temperature curves and smoothed images of vegetation ## Not run: data("Montana") L <- 45 U <- fssa(Montana, L) # MFSSA Reconstruction step: Q <- freconstruct(U = U, groups = list(1, 2, 3)) plotly_funts(Q[[1]], main = c("Temperature Curves Mean", "NDVI Images Mean"), color_palette = "RdYlGn", xticklabels = list( c("00:00", "06:00", "12:00", "18:00", "24:00"), c("113.40\u00B0 W", "113.30\u00B0 W") ), xticklocs = list(c(1, 6, 12, 18, 24), c(1, 33)), yticklabels = list(NA, c("48.70\u00B0 N", "48.77\u00B0 N")), yticklocs = list(NA, c(1, 33)) ) # mean plotly_funts(Q[[2]], main = c("Temperature Curves Periodic", "NDVI Images Periodic"), color_palette = "RdYlGn", xticklabels = list( c("00:00", "06:00", "12:00", "18:00", "24:00"), c("113.40\u00B0 W", "113.30\u00B0 W") ), xticklocs = list(c(1, 6, 12, 18, 24), c(1, 33)), yticklabels = list(NA, c("48.70\u00B0 N", "48.77\u00B0 N")), yticklocs = list(NA, c(1, 33)) ) # periodic plot(Q[[3]], obs = 3, main = c("Temperature Curves Trend", "NDVI Images Trend,") ) # trend ## End(Not run)
This function performs the decomposition (embedding and functional SVD steps)
for univariate (ufssa) or multivariate (mfssa) functional singular spectrum
analysis based on the input data type. The input can be a univariate or
multivariate functional time series (funts
) object.
fssa(Y, L = Y$N/2, ntriples = 20, type = "ufssa")
fssa(Y, L = Y$N/2, ntriples = 20, type = "ufssa")
Y |
an object of class |
L |
a positive integer, the window length, the default is half of FTS length. |
ntriples |
a positive integer, the number of eigentriples for the decomposition. |
type |
a string indicating the type of FSSA: "ufssa" (default for univariate FTS) or "mfssa" (default for multivariate FTS). |
An object of class fssa
, containing functional objects,
eigenvalues, window length, and original data.
data("Callcenter") # FSSA Decomposition step: L <- 28 U <- fssa(Callcenter, L) plot(U, type = "values", d = 10) plot(U, type = "vectors", d = 4) plot(U, type = "paired", d = 6) plot(U, type = "lcurves", d = 4, vars = 1) plot(U, type = "lheats", d = 4) plot(U, type = "wcor", d = 10) plotly_funts(U$Lsingf[[1]]) plot(U$Lsingf[[2]]) ## Not run: #--------------- Multivariate FSSA Example on bivariate ----------------------------- ## temperature curves and smoothed images of vegetation data("Montana") # MFSSA Decomposition step: L <- 45 U <- fssa(Montana, L) plot(U, type = "values", d = 10) plot(U, type = "vectors", d = 4) plot(U, type = "lheats", d = 4) plot(U, type = "lcurves", d = 4, vars = 1) plot(U, type = "paired", d = 6) plot(U, type = "periodogram", d = 4) plot(U, type = "wcor", d = 10) plotly_funts(U$Lsingf[[1]]) plot(U$Lsingf[[2]]) ## End(Not run)
data("Callcenter") # FSSA Decomposition step: L <- 28 U <- fssa(Callcenter, L) plot(U, type = "values", d = 10) plot(U, type = "vectors", d = 4) plot(U, type = "paired", d = 6) plot(U, type = "lcurves", d = 4, vars = 1) plot(U, type = "lheats", d = 4) plot(U, type = "wcor", d = 10) plotly_funts(U$Lsingf[[1]]) plot(U$Lsingf[[2]]) ## Not run: #--------------- Multivariate FSSA Example on bivariate ----------------------------- ## temperature curves and smoothed images of vegetation data("Montana") # MFSSA Decomposition step: L <- 45 U <- fssa(Montana, L) plot(U, type = "values", d = 10) plot(U, type = "vectors", d = 4) plot(U, type = "lheats", d = 4) plot(U, type = "lcurves", d = 4, vars = 1) plot(U, type = "paired", d = 6) plot(U, type = "periodogram", d = 4) plot(U, type = "wcor", d = 10) plotly_funts(U$Lsingf[[1]]) plot(U$Lsingf[[2]]) ## End(Not run)
The 'funts' class is designed to encapsulate functional time series objects, including both univariate (FTS) and multivariate (MFTS) forms. It provides a versatile framework for creating and manipulating 'funts' objects, accommodating various basis systems and dimensions.
funts( X, basisobj, argval = NULL, method = "data", start = 1, end = NULL, vnames = NULL, dnames = NULL, tname = NULL )
funts( X, basisobj, argval = NULL, method = "data", start = 1, end = NULL, vnames = NULL, dnames = NULL, tname = NULL )
X |
A matrix, three-dimensional array, or a list of matrix or array objects. When 'method="data"', it represents the observed curve values at discrete sampling points or argument values. When 'method="coefs"', 'X' specifies the coefficients corresponding to the basis system defined in 'basisobj'. If 'X' is a list, it defines a multivariate FTS, with each element being a matrix or three-dimensional array object. In matrix objects, rows correspond to argument values, and columns correspond to the length of the FTS. In three-dimensional array objects, the first and second dimensions correspond to argument values, and the third dimension to the length of the FTS. |
basisobj |
An object of class 'basisfd', a matrix of empirical basis, or a list of 'basisfd' or empirical basis objects. For empirical basis, rows correspond to basis functions, and columns correspond to grid points. |
argval |
A vector list of length 'p' which is a set of argument values corresponding to the observations in X. Each entry in this list should either be a numeric value or a list of numeric elements, depending on the dimension of the domain the variable is observed over. It can even vary from one variable to another, If it be NULL, the default value for argval are the integers 1 to n, where n is the size of the first dimension in argument X.? |
method |
Determines the type of the 'X' matrix: "coefs" or "data." |
start |
The time of the first observation. It can be a single positive integer or an object of classes 'Date', 'POSIXct', or 'POSIXt', specifying a natural time unit. |
end |
The time of the last observation, specified in the same way as 'start'. |
vnames |
a vector of strings specifies the variable names |
dnames |
list of vector of strings specifies the variable domain names |
tname |
a string specifies the time index name |
An instance of the 'funts' class containing functional time series data.
An instance of the 'funts' class containing functional time series data.
Check if an object is of class 'funts'
is.funts(obj)
is.funts(obj)
obj |
The object to check. |
TRUE if the object is of class 'funts', FALSE otherwise.
data("Callcenter") is.funts(Callcenter)
data("Callcenter") is.funts(Callcenter)
This function launches a Shiny app to facilitate the understanding of univariate
or multivariate Functional Singular Spectrum Analysis (fssa
). The app
enables users to perform univariate or multivariate FSSA on various data types,
including simulated and real data provided by the server. Users can also upload
their own data. The app supports simultaneous comparisons of different methods,
such as multivariate vs. univariate FSSA, and allows users to select the number
and types of basis elements used for estimating Functional Time Series
(funts
) objects. It offers plotting capabilities for both
funts
and fssa
.
launchApp(type = "ufssa")
launchApp(type = "ufssa")
type |
Type of FSSA with options of |
A shiny application object.
## Not run: launchApp() ## End(Not run)
## Not run: launchApp() ## End(Not run)
Returns the length of a "funts" object.
## S3 method for class 'funts' length(x)
## S3 method for class 'funts' length(x)
x |
an object of class "funts" . |
data("Callcenter") length(Callcenter)
data("Callcenter") length(Callcenter)
This function retrieves the Austin Temperature dataset from a GitHub repository hosted at https://github.com/haghbinh/dataset/Rfssa_dataset. Hosting datasets on GitHub rather than including them in the Rfssa R package conserves storage space. The Austin Temperature dataset contains intraday hourly temperature curves measured in degrees Celsius from January 1973 to July 2023, recorded once per month. The returned object is a raw dataset in 'list' format;
loadAustinData()
loadAustinData()
Containing two matrix objects:
A 24 by 607 matrix of discrete samplings of intraday hourly temperature curves, one day per month.
A 24 by 607 matrix of discrete samplings of intraday hourly temperature curves, one day per month.
Trinka, J., Haghbin, H., Shang, H., Maadooliat, M. (2023). Functional Time Series Forecasting: Functional Singular Spectrum Analysis Approaches. Stat, e621.
Austin_raw <- loadAustinData() str(Austin_raw)
Austin_raw <- loadAustinData() str(Austin_raw)
This function retrieves the Callcenter dataset from the Rfssa_dataset repository on GitHub
(https://github.com/haghbinh/dataset/Rfssa_dataset).
The Callcenter dataset represents a small call center for an anonymous bank.
It provides precise call timing data from January 1 to December 31, 1999.
The data is aggregated into 6-minute intervals on each day.
The returned object is a raw dataset in dataframe format;
it is not a 'funts' class object.
This raw data can then be further processed and converted into a 'funts' object named 'Callcenter'.
See funts
for more details on
working with functional time series of class 'funts'.
loadCallcenterData()
loadCallcenterData()
a dataframe with 87,600 rows and 5 variables:
number of calls in a 6-minute aggregated interval.
numeric vector indicating the aggregated interval.
date and time of call count recording.
weekday associated with Date.
month associated with Date.
Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., & Zhao, L. (2005). Statistical analysis of a telephone call center: A queueing-science perspective. Journal of the American Statistical Association, 100(469), 36-50.
Shen, H., & Huang, J. Z. (2005). Analysis of call center arrival data using singular value decomposition. Applied Stochastic Models in Business and Industry, 21(3), 251-263.
Huang, J. Z., Shen, H., & Buja, A. (2008). Functional principal components analysis via penalized rank one approximation. Electronic Journal of Statistics, 2, 678-695.
Maadooliat, M., Huang, J. Z., & Hu, J. (2015). Integrating data transformation in principal components analysis. Journal of Computational and Graphical Statistics, 24(1), 84-103.
require(fda) # Load Callcenter data Call_data <- loadCallcenterData() D <- matrix(sqrt(Call_data$calls), nrow = 240) # Define basis functions bs1 <- create.bspline.basis(c(0, 23), 22) Y <- funts(X = D, basisobj = bs1)
require(fda) # Load Callcenter data Call_data <- loadCallcenterData() D <- matrix(sqrt(Call_data$calls), nrow = 240) # Define basis functions bs1 <- create.bspline.basis(c(0, 23), 22) Y <- funts(X = D, basisobj = bs1)
This function retrieves the 'Jambi' dataset from a GitHub repository hosted at https://github.com/haghbinh/dataset/Rfssa_dataset. The Jambi dataset contains normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) image data from NASA’s MODerate-resolution Imaging Spectroradiometer (MODIS) with global coverage at a 250 m^2 resolution. The dataset covers the Jambi Province, Indonesia, known for various forested land uses, including natural forests and plantations. Monitoring land cover changes is crucial, especially in the context of forest exploitation and conservation efforts. Seasonal variations significantly impact long-term land cover changes. Data collection began on February 18, 2000, and continued until July 28, 2019, with data recorded every 16 days. This dataset is valuable for studying vegetative land cover changes in the region. The returned object is a raw dataset in 'list' format;
loadJambiData()
loadJambiData()
A list containing two arrays, each with dimensions 33 by 33 by 448. One array represents NDVI image data, and the other represents EVI image data. The list also contains a date vector of length 448, specifying the capture date for each 33 by 33 image.
[MODIS Product Information](https://lpdaac.usgs.gov/products/mod13q1v006/)
Lambin, E., Geist, H., Lepers, E. (1999). Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annual Review of Environment and Resources, 205-244.
- The dataset object loaded by this function.
Jambi_raw <- loadJambiData() str(Jambi_raw)
Jambi_raw <- loadJambiData() str(Jambi_raw)
This function retrieves the Montana dataset from a GitHub repository hosted at
https://github.com/haghbinh/dataset/Rfssa_dataset. Hosting datasets on GitHub
rather than including them in the Rfssa R package conserves storage space.
The Montana dataset contains intraday hourly temperature curves measured in degrees Celsius
and normalized difference vegetation index (NDVI) image data. Both types of data are recorded
near Saint Mary, Montana, USA. The NDVI images cover a region located between longitudes of
113.30 degrees West and 113.56 degrees West and latitudes of 48.71 degrees North and 48.78 degrees North.
For each recorded intraday temperature curve, an NDVI image was captured on the same day every
16 days, starting from January 1, 2008, and ending on September 30, 2013.
The dataset is valuable for environmental analysis, especially in the context of studying the impact
of temperature changes on vegetation. Combining both temperature and NDVI data can reveal more informative
patterns and insights. The returned object is a raw dataset in 'list' format;
This raw data can then be further processed and converted into a 'funts' object named 'Montana'.
See funts
for more details on working with functional time series of class 'funts'.
loadMontanaData()
loadMontanaData()
A list containing two components:
A 24 by 133 matrix of discrete samplings of intraday hourly temperature curves.
An array with dimensions 33 by 33 by 133, where each 33 by 33 slice represents an NDVI image.
Diamond, H. J., Karl, T., Palecki, M. A., Baker, C. B., Bell, J. E., Leeper, R. D., Easterling, D. R., Lawrimore, J. H., Meyers, T. P., Helfert, M. R., Goodge, G., and Thorne, P.W. (2013). U.S. climate reference network after one decade of operations: status and assessment. [Read More](https://www.ncdc.noaa.gov/crn/qcdatasets.html). Last accessed April 2020.
Tuck, S. L., Phillips, H. R., Hintzen, R. E., Scharlemann, J. P., Purvis, A., and Hudson, L. N. (2014). MODISTools – downloading and processing MODIS remotely sensed data in R. Ecology and Evolution, 4(24):4658–4668.
require(fda) # Load Montana data montana_data <- loadMontanaData() # Extract variables Temp <- montana_data$Temp NDVI <- montana_data$NDVI # Create a list for Montana data Montana_Data <- list(Temp / sd(Temp), NDVI) # Define basis functions bs1 <- create.bspline.basis(c(0, 23), 11) bs2 <- create.bspline.basis(c(1, 33), 13) bs2d <- list(bs2, bs2) bsmv <- list(bs1, bs2d) # Convert to funts object Y <- funts(X = Montana_Data, basisobj = bsmv, start = as.Date("2008-01-01"), end = as.Date("2013-09-30"), vnames = c("Normalized Temperature (\u00B0C)" , "NDVI"), dnames = list("Time", c("Latitude", "Longitude")), tname = "Date" )
require(fda) # Load Montana data montana_data <- loadMontanaData() # Extract variables Temp <- montana_data$Temp NDVI <- montana_data$NDVI # Create a list for Montana data Montana_Data <- list(Temp / sd(Temp), NDVI) # Define basis functions bs1 <- create.bspline.basis(c(0, 23), 11) bs2 <- create.bspline.basis(c(1, 33), 13) bs2d <- list(bs2, bs2) bsmv <- list(bs1, bs2d) # Convert to funts object Y <- funts(X = Montana_Data, basisobj = bsmv, start = as.Date("2008-01-01"), end = as.Date("2013-09-30"), vnames = c("Normalized Temperature (\u00B0C)" , "NDVI"), dnames = list("Time", c("Latitude", "Longitude")), tname = "Date" )
This function retrieves the Utqiagvik Temperature dataset from a GitHub repository hosted at https://github.com/haghbinh/dataset/Rfssa_dataset. Hosting datasets on GitHub rather than including them in the Rfssa R package conserves storage space. The Utqiagvik Temperature dataset contains intraday hourly temperature curves measured in degrees Celsius from January 1973 to July 2023, recorded once per month. The returned object is a raw dataset in 'list' format;
loadUtqiagvikData()
loadUtqiagvikData()
Containing two matrix objects:
A 24 by 607 matrix of discrete samplings of intraday hourly temperature curves, one day per month.
A 24 by 607 matrix of discrete samplings of intraday hourly temperature curves, one day per month.
Trinka, J., Haghbin, H., Shang, H., Maadooliat, M. (2023). Functional Time Series Forecasting: Functional Singular Spectrum Analysis Approaches. Stat, e621.
Utqiagvik_raw <- loadUtqiagvikData() str(Utqiagvik_raw)
Utqiagvik_raw <- loadUtqiagvikData() str(Utqiagvik_raw)
This dataset includes intraday hourly temperature curves measured in degrees Celsius and normalized difference vegetation index (NDVI) image data. The observations were recorded near Saint Mary, Montana, USA. The NDVI images cover a geographical region with longitudes ranging from 113.30 degrees West to 113.56 degrees West and latitudes from 48.71 degrees North to 48.78 degrees North.
The intraday temperature curves are sourced from Diamond et al. (2013), while the NDVI images were obtained from resources provided by Tuck et al. (2014).
For each recorded intraday temperature curve, an NDVI image was captured on the same day every 16 days. Data collection started on January 1, 2008, and concluded on September 30, 2013.
The primary goal of this dataset is to facilitate the analysis of temperature trends and investigate how temperature changes impact vegetation in the region. A multivariate analysis leveraging both temperature and NDVI variables can reveal more informative patterns and yield stronger signal extraction results.
The dataset is hosted on GitHub, and you can load it using the function loadMontanaData
.
The dataset has been converted into a multivariate functional time series using two B-spline basis function systems with 11 and 13 members, respectively. The resulting dataset is stored as a functional time series object of class 'funts'.
You can load the raw data using the function loadMontanaData
.
See funts
for more details.
Diamond, H. J., Karl, T., Palecki, M. A., Baker, C. B., Bell, J. E., Leeper, R. D., Easterling, D. R., Lawrimore, J. H., Meyers, T. P., Helfert, M. R., Goodge, G., and Thorne, P.W. (2013). U.S. climate reference network after one decade of operations: status and assessment. [Link](https://www.ncdc.noaa.gov/crn/qcdatasets.html). Last accessed April 2020.
Tuck, S. L., Phillips, H. R., Hintzen, R. E., Scharlemann, J. P., Purvis, A., and Hudson, L. N. (2014). MODISTools – downloading and processing MODIS remotely sensed data in R. Ecology and Evolution, 4(24), 4658–4668.
loadMontanaData
- Function to load the Montana dataset.
Create visualizations of FSSA Forecast (fforecast) class. This function supports plotting 'fforecast' data with one-dimensional or two-dimensional domains.
## S3 method for class 'fforecast' plot( x, group_index = NULL, ask = TRUE, npts = 100, obs = 1, main = NULL, col = NULL, ori_col = NULL, type = "l", lty = 1, ... )
## S3 method for class 'fforecast' plot( x, group_index = NULL, ask = TRUE, npts = 100, obs = 1, main = NULL, col = NULL, ori_col = NULL, type = "l", lty = 1, ... )
x |
an object of class |
group_index |
an integer specifying the group index for the plot. |
ask |
logical: If 'TRUE', and 'group_index' be 'NULL', after printing the first grouping graphic, it will pause when the user asks for the next group graphic and wait. |
npts |
number of grid points for the plots. |
obs |
observation number (for two-dimensional domains). |
main |
main title for the plot. |
col |
specify the predicted FTS color; if it is 'NULL', it will be set as the default. |
ori_col |
specify the original FTS color; if it is 'NULL', it will be set as the default. |
type |
type of plot ("l" for line, "p" for points, etc.). |
lty |
line type (1 for solid, 2 for dashed, etc.). |
... |
additional graphical parameters passed to plotting functions. |
# Example with one-dimensional domain data("Callcenter") # FSSA Decomposition step: fssa_results <- fssa(Callcenter, L = 28) # Perform FSSA R-forecasting pr_V <- fforecast(U = fssa_results, groups = list(1,1:7), len = 14, method = "vector", only.new = FALSE) plot(pr_V)
# Example with one-dimensional domain data("Callcenter") # FSSA Decomposition step: fssa_results <- fssa(Callcenter, L = 28) # Perform FSSA R-forecasting pr_V <- fforecast(U = fssa_results, groups = list(1,1:7), len = 14, method = "vector", only.new = FALSE) plot(pr_V)
This function is a plotting method for objects of class functional singular spectrum analysis (fssa
).
It aids users in making decisions during the grouping stage of univariate or multivariate functional singular spectrum analysis.
## S3 method for class 'fssa' plot( x, d = length(x$values), idx = 1:d, idy = idx + 1, contrib = TRUE, groups = as.list(1:d), lwd = 2, type = "values", vars = NULL, ylab = NA, main = NA, ... )
## S3 method for class 'fssa' plot( x, d = length(x$values), idx = 1:d, idy = idx + 1, contrib = TRUE, groups = as.list(1:d), lwd = 2, type = "values", vars = NULL, ylab = NA, main = NA, ... )
x |
An object of class |
d |
An integer representing the number of elementary components to plot. |
idx |
A vector of indices specifying which eigen elements to plot. |
idy |
A second vector of indices of eigen elements to plot (for |
contrib |
A logical value. If |
groups |
A list or vector of indices determining the grouping used for decomposition (for |
lwd |
A vector of line widths. |
type |
The type of plot to be displayed. Possible types include:
|
vars |
A numeric value specifying the variable number (used in plotting MFSSA |
ylab |
A character vector representing the names of variables. |
main |
The main plot title. |
... |
Additional arguments to be passed to methods, such as graphical parameters. |
data("Callcenter") L <- 28 U <- fssa(Callcenter, L) plot(U, type = "values", d = 10) plot(U, type = "vectors", d = 4) plot(U, type = "paired", d = 6) plot(U, type = "lcurves", d = 4, vars = 1) plot(U, type = "lheats", d = 4) plot(U, type = "wcor", d = 10)
data("Callcenter") L <- 28 U <- fssa(Callcenter, L) plot(U, type = "values", d = 10) plot(U, type = "vectors", d = 4) plot(U, type = "paired", d = 6) plot(U, type = "lcurves", d = 4, vars = 1) plot(U, type = "lheats", d = 4) plot(U, type = "wcor", d = 10)
Create visualizations of Functional Time Series (funts) data, supporting both one-dimensional and two-dimensional domains.
## S3 method for class 'funts' plot( x, npts = 100, obs = 1, xlab = NULL, ylab = NULL, main = NULL, type = "l", lty = 1, ... )
## S3 method for class 'funts' plot( x, npts = 100, obs = 1, xlab = NULL, ylab = NULL, main = NULL, type = "l", lty = 1, ... )
x |
An object of class |
npts |
Number of grid points for the plots. |
obs |
Observation number (for two-dimensional domains). |
xlab |
X-axis label. |
ylab |
Y-axis label. |
main |
Main title for the plot. |
type |
Type of plot ("l" for line, "p" for points, etc.). |
lty |
Line type (1 for solid, 2 for dashed, etc.). |
... |
Additional graphical parameters passed to plotting functions. |
This function enables the creation of visualizations for Functional Time Series (funts) data. It supports both one-dimensional and two-dimensional domains.
For one-dimensional domains, line plots are used, while for two-dimensional domains, image plots are employed.
# Example with one-dimensional domain data("Callcenter") plot(Callcenter, lwd = 2, col = "deepskyblue4", main = "Call Center Data") # Example with two-dimensional domain data("Montana") plot(Montana, obs = 2, main = c("Temperature Curves", "NDVI Images,"))
# Example with one-dimensional domain data("Callcenter") plot(Callcenter, lwd = 2, col = "deepskyblue4", main = "Call Center Data") # Example with two-dimensional domain data("Montana") plot(Montana, obs = 2, main = c("Temperature Curves", "NDVI Images,"))
Visualize univariate or multivariate Functional Time Series (funts) using Plotly-based plots.
plotly_funts( x, vars = NULL, types = NULL, subplot = TRUE, main = NULL, ylab = NULL, xlab = NULL, tlab = NULL, zlab = NULL, xticklabels = NULL, xticklocs = NULL, yticklabels = NULL, yticklocs = NULL, color_palette = "RdYlBu", reverse_color_palette = FALSE, ... )
plotly_funts( x, vars = NULL, types = NULL, subplot = TRUE, main = NULL, ylab = NULL, xlab = NULL, tlab = NULL, zlab = NULL, xticklabels = NULL, xticklocs = NULL, yticklabels = NULL, yticklocs = NULL, color_palette = "RdYlBu", reverse_color_palette = FALSE, ... )
x |
an object of class |
vars |
numeric vector specifying which variables in the FTS to plot (default: all). |
types |
tuple of strings specifying plot types for each variable. |
subplot |
logical for subplotting line plots. |
main |
titles for each plot. |
ylab |
y-axis titles. |
xlab |
x-axis titles. |
tlab |
time-axis titles. |
zlab |
z-axis titles. |
xticklabels |
tick labels for the domain of the functions. |
xticklocs |
positions of tick labels for the domain of the functions. |
yticklabels |
tick labels for the domain of the functions. |
yticklocs |
positions of tick labels for the domain of the functions. |
color_palette |
color palette for two-dimensional FTS plots. |
reverse_color_palette |
reverse the color palette scale. |
... |
additional arguments to pass to Plotly methods. |
Supported plot types for one-dimensional domain variables: - "line": line plots (default). - "heatmap": heatmaps. - "3Dsurface": 3D surface plots. - "3Dline": 3D line plots.
Supported plot type for two-dimensional domain variables: - "heatmap"
Each variable can be plotted multiple times with different types.
## Not run: data("Callcenter") # Univariate FTS example plotly_funts(Callcenter) plotly_funts(Callcenter, main = "Call Center Data Line Plot", xticklabels = list(c("00:00", "06:00", "12:00", "18:00", "24:00")), xticklocs = list(c(1, 60, 120, 180, 240)) ) plotly_funts(Callcenter, type = "3Dline", main = "Callcenter Data") plotly_funts(Callcenter, type = "3Dsurface", main = "Callcenter Data") plotly_funts(Callcenter, type = "heatmap", main = "Callcenter Data") data("Montana") # Multivariate FTS example plotly_funts(Montana[1:100], main = c("Temperature Curves", "NDVI Images"), color_palette = "RdYlGn", xticklabels = list( c("00:00", "06:00", "12:00", "18:00", "24:00"), c("113.40\u00B0 W", "113.30\u00B0 W") ), xticklocs = list(c(1, 6, 12, 18, 24), c(1, 33)), yticklabels = list(NA, c("48.70\u00B0 N", "48.77\u00B0 N")), yticklocs = list(NA, c(1, 33)) ) ## End(Not run)
## Not run: data("Callcenter") # Univariate FTS example plotly_funts(Callcenter) plotly_funts(Callcenter, main = "Call Center Data Line Plot", xticklabels = list(c("00:00", "06:00", "12:00", "18:00", "24:00")), xticklocs = list(c(1, 60, 120, 180, 240)) ) plotly_funts(Callcenter, type = "3Dline", main = "Callcenter Data") plotly_funts(Callcenter, type = "3Dsurface", main = "Callcenter Data") plotly_funts(Callcenter, type = "heatmap", main = "Callcenter Data") data("Montana") # Multivariate FTS example plotly_funts(Montana[1:100], main = c("Temperature Curves", "NDVI Images"), color_palette = "RdYlGn", xticklabels = list( c("00:00", "06:00", "12:00", "18:00", "24:00"), c("113.40\u00B0 W", "113.30\u00B0 W") ), xticklocs = list(c(1, 6, 12, 18, 24), c(1, 33)), yticklabels = list(NA, c("48.70\u00B0 N", "48.77\u00B0 N")), yticklocs = list(NA, c(1, 33)) ) ## End(Not run)
This custom print method is designed for objects of the FSSA Forecast (fforecast) class. It provides a summary of the fforecast object.
## S3 method for class 'fforecast' print(x, ...)
## S3 method for class 'fforecast' print(x, ...)
x |
an object of class "fforecast" to be printed. |
... |
further arguments passed to or from other methods. |
# Example with one-dimensional domain data("Callcenter") # FSSA Decomposition step: fssa_results <- fssa(Callcenter, L = 28) # Perform FSSA R-forecasting pr_R <- fforecast(U = fssa_results, groups = c(1:3), len = 14, method = "recurrent") print(pr_R)
# Example with one-dimensional domain data("Callcenter") # FSSA Decomposition step: fssa_results <- fssa(Callcenter, L = 28) # Perform FSSA R-forecasting pr_R <- fforecast(U = fssa_results, groups = c(1:3), len = 14, method = "recurrent") print(pr_R)
This custom print method is designed for objects of the Functional Time Series (funts) class. It provides a summary of the funts object, including its length (N), the number of variables, and its structure.
## S3 method for class 'funts' print(x, ...)
## S3 method for class 'funts' print(x, ...)
x |
an object of class "funts" to be printed. |
... |
further arguments passed to or from other methods. |
## Not run: data("Callcenter") print(Callcenter) ## End(Not run)
## Not run: data("Callcenter") print(Callcenter) ## End(Not run)